Oxygenic photosynthesis as a protection mechanism for cyanobacteria against iron-encrustation in environments with high Fe2+ concentrations
نویسندگان
چکیده
If O2 is available at circumneutral pH, Fe(2+) is rapidly oxidized to Fe(3+), which precipitates as FeO(OH). Neutrophilic iron oxidizing bacteria have evolved mechanisms to prevent self-encrustation in iron. Hitherto, no mechanism has been proposed for cyanobacteria from Fe(2+)-rich environments; these produce O2 but are seldom found encrusted in iron. We used two sets of illuminated reactors connected to two groundwater aquifers with different Fe(2+) concentrations (0.9 μM vs. 26 μM) in the Äspö Hard Rock Laboratory (HRL), Sweden. Cyanobacterial biofilms developed in all reactors and were phylogenetically different between the reactors. Unexpectedly, cyanobacteria growing in the Fe(2+)-poor reactors were encrusted in iron, whereas those in the Fe(2+)-rich reactors were not. In-situ microsensor measurements showed that O2 concentrations and pH near the surface of the cyanobacterial biofilms from the Fe(2+)-rich reactors were much higher than in the overlying water. This was not the case for the biofilms growing at low Fe(2+) concentrations. Measurements with enrichment cultures showed that cyanobacteria from the Fe(2+)-rich environment increased their photosynthesis with increasing Fe(2+) concentrations, whereas those from the low Fe(2+) environment were inhibited at Fe(2+) > 5 μM. Modeling based on in-situ O2 and pH profiles showed that cyanobacteria from the Fe(2+)-rich reactor were not exposed to significant Fe(2+) concentrations. We propose that, due to limited mass transfer, high photosynthetic activity in Fe(2+)-rich environments forms a protective zone where Fe(2+) precipitates abiotically at a non-lethal distance from the cyanobacteria. This mechanism sheds new light on the possible role of cyanobacteria in precipitation of banded iron formations.
منابع مشابه
Adaptation to Hydrogen Sulfide of Oxygenic and Anoxygenic Photosynthesis among Cyanobacteria.
Four different types of adaptation to sulfide among cyanobacteria are described based on the differential toxicity to sulfide of photosystems I and II and the capacity for the induction of anoxygenic photosynthesis. Most cyanobacteria are highly sensitive to sulfide toxicity, and brief exposures to low concentrations cause complete and irreversible cessation of CO(2) photoassimilation. Resistan...
متن کاملELSI SYMPOSIUM Manganese and the Evolution of Photosynthesis
Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the ph...
متن کاملExtracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria?
Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities, and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that p...
متن کاملPhotosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica ‘Solar Lake’), a Model Anoxygenic Photosynthetic Cyanobacterium
Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric ...
متن کاملLight and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation.
Efficient photosynthesis is of fundamental importance for plant survival and fitness. However, in oxygenic photosynthesis, the complex apparatus responsible for the conversion of light into chemical energy is susceptible to photodamage. Oxygenic photosynthetic organisms have therefore evolved several protective mechanisms to deal with light energy. Rapidly inducible non-photochemical quenching ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014